

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 1 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

MODBUS INTEGRATION WITH A DEEP SEA CONTROLLER

1. Introduction
Deep Sea Electronics is one of the world’s top manufacturers of generator controllers, auto transfer switch
controllers, battery chargers, and vehicle & off-highway controllers. The DSE8610 MKII represents the latest in
complex load sharing & synchronising control technology and is designed to handle the most complex grid type
generator applications.

The DSE8610 offers a Mobus RTU interface over RS485 through which the operation of the controller can be
monitored and controlled by a Senquip telemetry device. This application note describes the process of connecting
a Senquip ORB or QUAD as a Modbus master to the Deep Sea DSE8610 auto start control module as a slave.

In this application note, a single Deep Sea controller has been connected to a Senquip ORB. However, RS485
supports up to 32 connected devices, so a single Senquip device could be connected to multiple controllers.

In this application note, we will show how to connect to a DSE8610 controller and will then write a script to
implement a remote start, stop function.

Figure 1 – DSE8610 Engine Controller

Disclaimer: The information provided in this application note is intended for informational purposes only. Users of
the remote machine control system described herein should exercise caution and adhere to all relevant safety
guidelines and regulations. By utilising the information provided in this application note, users acknowledge their
understanding and acceptance of the associated risks. The authors and contributors disclaim any warranties,
expressed or implied, regarding the accuracy or completeness of the information presented.

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 2 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

2. Wiring the Senquip Device to the Deep Sea Controller
In this application note, we will use an ORB-C1-G wired to RS485 Port 1 on the Deep Sea controller.

The following connections are required:

Connection Senquip ORB Deep Sea DSE8610

RS485 B Pin 6, B Pin 72, B

RS485 A Pin 7, A Pin 73, A

GND Pin 4, GND Pin 71, SCR

If the Senquip device and Deep Sea controller are at the end of the line on the RS485 bus, then a 120ohm
termination resistor must be placed at each end of the line. The 120 ohm resistor on the Senquip device can be
enabled as a setting.

Since the Senquip device and Deep Sea controller share a common power supply ground, the ground connection
between pins 4 and 71 is not required. If a screened wire is available, it should be connected to either the Senquip
or Deep Sea controller ground but not both. Connecting to both can create a ground loop which will be susceptible
to magnetic fields.

Figure 2 - Senquip ORB to DSE8610 Wiring

3. Senquip Device Configuration
We get the communications specification for the Deep Sea controller from the Deep Sea GenComm Communications
Protocol manual. GenComm was devised by Deep Sea Electronics Plc to provide a uniform standard for
communicating with any generating set control equipment. It allows all telemetry information relevant to a
generating set to be read from the control equipment, regardless of manufacturer or specification.

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 3 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Parameter Value

Baud rate 115200

Data bits 8

Parity None

Stop bits 1

The Master inactivity timeout on the Deep Sea controller should be set to at least twice the value of the Senquip
base interval. For example, if the Senquip device reads from the controller every 5 seconds, the timeout should be
set to at least 10 seconds.

The Senquip ORB serial port is set to match the Deep Sea controller requirements:

Figure 3 - Senquip ORB serial Port Settings

The default Modbus slave id for the controller is 10. This can be changed, for instance when multiple controllers are
to be connected to a single Senquip device.

Registers are divided into 256 pages each containing up to 256 registers, the actual register address is obtained from
the formula: register_address =page_number*256+register_offset. Available register pages are given in Appendix A.

Note that the register addresses can change per model.

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 4 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

We will read the following registers from the Deep Sea controller:

Register Page Offset Address Scaling Unit Type

Oil pressure 4 0 1024 1 Kpa 16 bit unsigned

Coolant temperature 4 1 1025 1 °C 16 bit signed

Battery voltage 4 5 1029 0.1 V 16 bit unsigned

Stop led 190 14 48654 1 16 bit unsigned

Gen available led 190 21 48661 1 16 bit unsigned

Gen breaker led 190 19 48659 1 16 bit unsigned

Control mode 3 4 772 1 16 bit unsigned

The meaning of the allowable values for control more are given below:

Mode Description

0 Stop mode

1 Auto mode

2 Manual mode

3 Test on load mode

4 Auto with manual restore mode/Prohibit Return

5 User configuration mode

6 Test off load mode

7 Off Mode

8-65534 Reserved

65535 Unimplemented

Stop mode means stop the engine (generator) and in the case of ‘automatic mains failure units’ transfer the load to
the mains if possible.

Auto mode means automatically start the engine (generator) in the event of a remote start signal or a mains-failure,
and in the case of ‘automatic mains failure units’ transfer the load to the generator when available. When the
remote start signal is removed or the mains returns, stop the engine (generator) and in the case of ‘automatic mains
failure units’ transfer the load back to the mains.

Manual mode means start the engine (generator). With some control units it will also be necessary to press the start
button before such a manual start is initiated. In the case of ‘automatic mains failure units’ do not transfer the load
to the generator unless the mains fails.

Modbus reads are configured on the Senquip device and are shown in Figure 4. Note the calibration applied to the
battery voltage, 0-300 in gives 0-30 out, or 0.1 as specified in the Deep Sea register specification.

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 5 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 4 - Senquip Device Modbus Settings

4. Implementing Start, Stop Control in a Script
We will now write a script to enable remote starting and stopping of a genset using the DSE8610 controller. The full
script is available in Appendix B. It is assumed that the reader has scripting access, and that they have a fair
knowledge of the Senquip scripting language. Further details on the Senquip scripting language can be found in the
Senquip Scripting Guide.

We will use trigger buttons on the Senquip Portal to implement functions to put the generator in manual mode, start
the generator, synchronise, and stop the generator. We create 4 Trigger Parameters on the device scripting page.
We have named the triggers Manual, Start, Synchronise, and Stop, and have made them yellow, green, blue, and
red.

Figure 5 - Creating the Start and Stop Trigger Buttons

Note the confirmation message that will appear when a user activates that start button.

https://docs.senquip.com/scripting_guide/

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 6 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 6 - Example Trigger Button Confirmation Message

The order of operations implemented in the script will be as shown in Figure 7.

Figure 7 - Order of Operations

A common requirement for monitoring applications is knowing what ‘state’ a machine is in. The concept of machine

states is built into Senquip devices. From the current measurement data, a script can work out what state the

machine is in and record it accordingly using a single function call. From state information, the Senquip device can

automatically calculate utilisation.

We will configure the following states on the device scripting page.

Figure 8 - Generator States

Stop Manual Start Synchronise Stop

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 7 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

First, we load the required libraries and create some global variables to store the state of the machine. Variables
declared outside of a function have scope in all functions and are used to store state between measurement cycles.
The following global variables are used:

Variable Function

state Holds current state of the machine (manual, stop, safety, started, synchronising, syncronised)

Gen_available Indicates if the generator is available to supply power i.e. it is syncronised

Gen_breaker Indicates if the generator is currently supplying power or not

Control_mode Indicates the current generator mode (stop, auto, or manual)

We also declare constant manual, stop, safety, started, synchronising, and syncronised states to make the code
easier to read.

The main data handler is called after the Senquip device completes all measurement tasks. We check if the current
state and the latest set of Modbus reads are valid before attempting to use them further in the script.

In line 20, we first parse the JSON data file that is passed to the data handler to create a structure that contains all
the data measured in the last measurement cycle. Based on the latest set of Modbus reads, we update the current
state variable to reflect the status of the generator. In line 36, we update the Senquip device state so that utilisation
can be calculated automatically by the device. The following table describes the state allocation. Note that there
are other states not considered in this application that must be handled in a final solution.

Control_Mode Gen_available Gen_Breaker Current State New State

STOP X X X STOP

MANUAL No No X MANUAL

MANUAL Yes No X STARTED

MANUAL Yes Yes X SYNCD

MANUAL Yes No SAFETY STARTED

MANUAL Yes Yes SYNC SYNCD

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 8 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Once the current state reflects that of the generator, we dispatch an info event to the Senquip Portal to keep the
user informed. Note the else in line 46 which is dispatched as a warning if all the Modbus registers were not
correctly read. In a final solution, consideration should be given to what other actions to take. This ends the data
handler function.

We will now look at the trigger functions that are used to change the state of the Deep Sea controller.

The first trigger function requests manual mode if the controller is currently in stop mode. To change the controller
mode, we send a write Modbus command to register 4104 = page 16, register 8. Register 8 must be written with a
specific code “System Control Key” to change the controller state.

A summary of system control keys is given below. Further keys can be found in the GenComm standard. Function
codes 0 to 31 perform exactly the same function as pressing the equivalent button on the control unit.

Function code System Control Function System Control Key

0 Select Stop mode 35700

1 Select Auto mode 35701

2 Select Manual mode 35702

3 Select Test on load mode 35703

4 Select Auto with manual restore mode 35704

5 Start engine if in manual or test modes 35705

6 Mute alarm 35706

7 Reset alarms 35707

8 Transfer to generator 35708

A safety mechanism is built into the Deep Sea controller to protect from inadvertant writes that may change state.
To execute a write, one of the system control keys must be written into register 8 and its ones-compliment value
written into register 9 with a single write function. Writing any other value or using a function that is not available
will return extended exception code 7 (Illegal value written to register) and have no affect. A production script
should read and take action based on the return.

To write to multiple Modbus registers, function 16 (write multiple registers) is used.

We will look at an example write to set the control mode to request manual mode. The System Control Key to
request manual mode is:

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 9 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

• Decimal: 35702,

• Hexadecimal: 0x8B76 hex,

• Binary: 0b1000 1011 0111 0110.

The ones complement value is:

• Binary: 0b0111 0100 1000 1001,

• Hexadecimal: 0x7498.

The table below describes the required Modbus write message.

Byte Value Meaning

1 0x0A The Deep Sea Controller slave address

2 0x10 Function code 16, write multiple registers

3 0x10 MSB of register address 4104

4 0x08 LSB of register address 4104 (0x1008 = 4104)

5 0x00 MSB of number of registers to write

6 0x02 LSB of number of registers to write (0x0002 = 2 x 16-bit registers)

7 0x04 Number of bytes to follow 2 x 16-bit registers equals 4 bytes

8 0x8b MSB of System Function Code to write into register 4104

9 0x76 LSB of System Function Code to write into register 4104 (0x8b76 = 35702)

10 0x74 MSB of the ones compliment System Function Code

11 0x89 LSB of the ones compliment System Function Code

12 TBD MSB of Modbus checksum as calculated by the Senquip SQ.crc function

13 TBD LSB of Modbus checksum as calculated by the Senquip SQ.crc function

The trigger function to request manual mode is given below. The SQ.crc function is used to create the modbus crc.
A SQ.encode function encodes the crc number into hexadecimal ASCII, with the MSB encoded first. The SQ.write
function is used to send the serial message to port 1. Also coded are some responses if manual mode is requested,
and the generator is already in manual mode, is started, or is already synchronised.

Figure 9 - Example Trigger Button Responses

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 10 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Trigger functions to request start mode, synchronise, and stop mode are also provided. They are similar to the
manual mode request and are not discussed further.

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 11 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

5. Conclusions
The Senquip scripting language makes it simple to interface into Deep Sea generator controllers like the DSE8610.

Most Deep Sea controllers use the GenComm standard for Modbus communication and so the application note is

applicable to many other models of controller.

In addition to data received from the Deep Sea controller, additional parameters such as location, battery voltage,

pitch, roll, and vibration can be added using sensors integrated into the Senquip device. Other sensors can be added

to measure oil quality, tamper and more.

Figure 10 - Typical Portal Display with Minimal Parameters Shown

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 12 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

6. Appendix A – System Function Keys

Page number Description Read/write

0 Communications status information Read only

1 Communications configuration Read/write and write only

2 Modem configuration Read/write

3 Generating set status information Read only

4 Basic instrumentation Read only

5 Extended instrumentation Read only

6 Derived Instrumentation Read only

7 Accumulated Instrumentation Read/write

8 Alarm conditions Read only

9 Total Harmonic Distortion information Read only

10 Reserved

11 Diagnostic – general Read only

12 Diagnostic – digital inputs Read only

13 Diagnostic – digital outputs Read only and read write

14 Diagnostic – LEDs Read only and read write

15 Diagnostic – Reserved

16 Control registers Read only and write only

17 J1939 active diagnostic trouble codes in decoded format Read only

18 J1939 active diagnostic trouble codes in raw format Read only

19 Reserved

20 Various strings Read only

24 Identity strings Read/write

26 State machine name strings Read only

28 State machine state strings Read only

29-31 Reserved

32-95 Alarm strings (Old alarm system) Read only

32-36 2131 Expansion module name strings Read only

37-40 2133 Expansion module name strings Read only

41-43 2152 Expansion module name strings Read only

44-48 2131 Expansion module digital alarm strings Read only

49-58 2131 Expansion module analogue alarm strings Read only

59-66 2133 Expansion module analogue alarm strings Read only

142 ECU Trouble Codes Read only

143-149 ECU Trouble Code short description string Read only

152 User calibration of expansion module analogue inputs Read/write

153 Unnamed alarm conditions Read only

154 Named Alarm Conditions Read only

156 Expansion module enable status Read only

158 Expansion module communications status Read only

160 Unnamed input function Read only

166-169 User configurable pages Read only

170 Unnamed input status Read only

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 13 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

171 Unnamed input status continued Read only

180 Unnamed output sources & polarities Read only

181 Unnamed output sources & polarities continued Read only

182 Virtual output sources & polarities Read only

183 Configurable output sources & polarities Read only

184 Analogue output sources, types and values Read only

190 Unnamed output status Read only

191 Virtual output status Read only

192 Configurable output status Read only

193 Remote control sources Read/write

200-239 Unnamed alarm strings Read only

240-246 Analogue Input Name Strings Read only

250 Misc strings Read only

251-255 Reserved

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 14 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

7. Appendix B – Full Application Script

load("senquip.js");

load("api_serial.js");

load("api_math.js");

load("api_config.js");

load("api_timer.js");

let state = 0; // variable to indicate the current state of the machine

let Gen_available = 0; // modbus 6, is the generator available to provide power indicator

let Gen_breaker = 0; // modbus 7, breaker state, open or closed

let Control_mode = 0; // modbus 8, control mode --- 0 is stop --- 1 is auto --- 2 is manual

let MANUAL = 1;

let STOP = 2;

let SAFETY = 3;

let STARTED = 4;

let SYNC = 5;

let SYNCD = 6;

SQ.set_data_handler(function (data) {

 let obj = JSON.parse(data);

 if (typeof obj.state === "number") {

 state = obj.state;

 } // read the current state

 if (

 typeof obj.mod6 === "number" &&

 typeof obj.mod7 === "number" &&

 typeof obj.mod8 === "number"

) {

 // clean modbus read

 Gen_available = obj.mod6;

 Gen_breaker = obj.mod7;

 Control_mode = obj.mod8;

 if (Control_mode === 0) {

 state = STOP;

 } // if the generator is in stop mode, set state to stop mode

 else if (Control_mode === 2 && Gen_available === 0 && Gen_breaker === 0) {

 state = MANUAL;

 } // if in manual mode, unavailable, and the breaker is off, set to manual state

 else if (Control_mode === 2 && Gen_available === 1 && Gen_breaker === 0) {

 state = STARTED;

 } // if in manual mode, available, and the breaker is off, set to started state

 else if (Control_mode === 2 && Gen_available === 1 && Gen_breaker === 1) {

 state = SYNCD;

 } // if in manual mode, available, and the breaker is on, set to synchronised state

 if (

 obj.state === SAFETY &&

 Gen_available === 1 &&

 Gen_breaker === 0 &&

 Control_mode === 2

) {

 state = STARTED;

 } // if in safety delay and available, set to started state

 if (

 obj.state === SYNC &&

 Gen_available === 1 &&

 Gen_breaker === 1 &&

 Control_mode === 2

) {

 state = SYNCD;

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 15 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

 } // if synchronising and breaker closed, set to synced state

 SQ.set_state(state); // set the new state

 if (state === 0) {

 SQ.dispatch_event(1, SQ.INFO, "Controller in undefined state");

 } else if (state === MANUAL) {

 SQ.dispatch_event(1, SQ.INFO, "Controller in manual mode");

 } else if (state === STOP) {

 SQ.dispatch_event(1, SQ.INFO, "Controller in stop mode");

 } else if (state === SAFETY) {

 SQ.dispatch_event(1, SQ.INFO, "Controller in safety delay");

 } else if (state === STARTED) {

 SQ.dispatch_event(1, SQ.INFO, "Controller in start state");

 } else if (state === SYNC) {

 SQ.dispatch_event(1, SQ.INFO, "Controller sychronising");

 } else if (state === SYNCD) {

 SQ.dispatch_event(1, SQ.INFO, "Controller synchronised");

 }

 } else {

 SQ.dispatch_event(1, SQ.WARNING, "Controller Modbus read Fault");

 } // we didn't get a clean Modbus read

}, null);

SQ.set_trigger_handler(function (tp) {

 if (tp === 1) {

 // Request manual mode

 if (Control_mode === 0 && Gen_available === 0 && Gen_breaker === 0) {

 // if stopped and unavailable to supply power and the breaker is open

 // Create a Modbus command

 // \x0A = Slave address 10

 // \x10 = Modbus Function 16 (Write Multiple Holding Register)

 // \x10\x08 = Register Address 4104

 // \x00\x02 = Number of registers to write

 // \x04 = Number of bytes to follow

 // \x8b\x76 = Value to write to register 1 = 35702

 // \x74\x89 = Value to write to register 2 = 1's compliment of above

 let cmd_str = "\x0A\x10\x10\x08\x00\x02\x04\x8B\x76\x74\x89";

 let crc = SQ.crc(cmd_str);

 let crc_str = SQ.encode(crc, -SQ.U16);

 let modbus_str = cmd_str + crc_str;

 SERIAL.write(1, modbus_str, modbus_str.length);

 } else {

 if (Control_mode === 2 && Gen_available === 0 && Gen_breaker === 0) {

 SQ.dispatch_event(1, SQ.INFO, "Module already in manual mode");

 } else if (

 Control_mode === 2 &&

 Gen_available === 1 &&

 Gen_breaker === 0

) {

 SQ.dispatch_event(1, SQ.INFO, "Generator already started");

 } else if (

 Control_mode === 2 &&

 Gen_available === 1 &&

 Gen_breaker === 1

) {

 SQ.dispatch_event(1, SQ.INFO, "Generator already synchronised");

 }

 }

 }

 if (tp === 2) {

 // Request start mode

 if (Control_mode === 2 && Gen_available === 0 && Gen_breaker === 0) {

 // if in manual and unavailable to supply power and the breaker is open

 let cmd_str = "\x0A\x10\x10\x08\x00\x02\x04\x8B\x79\x74\x86"; // system key code 35705

 Document Number Revision Prepared By Approved By
 APN0029 1.0 JG NB

 Title Page
 Modbus Integration with A Deep Sea Engine Controller 16 of 16

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

 let crc = SQ.crc(cmd_str);

 let crc_str = SQ.encode(crc, -SQ.U16);

 let modbus_str = cmd_str + crc_str;

 SERIAL.write(1, modbus_str, modbus_str.length);

 state = SAFETY;

 } else {

 if (Control_mode === 0) {

 SQ.dispatch_event(1, SQ.INFO, "Module not in manual mode");

 } else if (

 Control_mode === 2 &&

 Gen_available === 1 &&

 Gen_breaker === 0

) {

 SQ.dispatch_event(1, SQ.INFO, "Generator already started");

 } else if (

 Control_mode === 2 &&

 Gen_available === 1 &&

 Gen_breaker === 1

) {

 SQ.dispatch_event(1, SQ.INFO, "Generator already synchronised");

 }

 }

 }

 if (tp === 3) {

 // Request syncronise

 if (Control_mode === 2 && Gen_available === 1 && Gen_breaker === 0) {

 // if in manual and available to supply power and the breaker is open

 let cmd_str = "\x0A\x10\x10\x08\x00\x02\x04\x8B\x7C\x74\x83"; // system key code 35708

 let crc = SQ.crc(cmd_str);

 let crc_str = SQ.encode(crc, -SQ.U16);

 let modbus_str = cmd_str + crc_str;

 SERIAL.write(1, modbus_str, modbus_str.length);

 state = 5;

 } else {

 if (Control_mode === 0) {

 SQ.dispatch_event(1, SQ.INFO, "Module not in manual mode");

 } else if (Control_mode === 2 && Gen_available === 0) {

 SQ.dispatch_event(1, SQ.INFO, "Generator not yet available");

 } else if (

 Control_mode === 2 &&

 Gen_available === 1 &&

 Gen_breaker === 1

) {

 SQ.dispatch_event(1, SQ.INFO, "Generator already synchronised");

 }

 }

 }

 if (tp === 4) {

 // Request stop mode

 if (Control_mode === 2) {

 let cmd_str = "\x0A\x10\x10\x08\x00\x02\x04\x8B\x74\x74\x8B"; // system key code 35700

 let crc = SQ.crc(cmd_str);

 let crc_str = SQ.encode(crc, -SQ.U16);

 let modbus_str = cmd_str + crc_str;

 SERIAL.write(1, modbus_str, modbus_str.length);

 SQ.set_state(2);

 } else {

 if (Control_mode === 0) {

 SQ.dispatch_event(1, SQ.INFO, "Module already in stop mode");

 }

 }

 }

}, null);

