Examples¶
Data Manipulation and Events¶
Example - Create the sum of analog1 and analog2 values and send the new value as cp1. Also monitor the sum against predefined thresholds. If a threshold is exceeded, dispatch an event. Note that it is also good practice to check the analog values exist (and are a ‘number’ type) before trying to use them, or the script will fail.
load('senquip.js');
let ALARM_THRESHOLD = 55;
let WARN_THRESHOLD = 20;
SQ.set_data_handler(function(data) {
// The current measurement data is passed in as a string.
// To easily access values, convert the string into a JSON object
let obj = JSON.parse(data);
// Check measurement values (analog1, analog2) exist in the data object before using them
// or the script will throw an error and stop execution
if ((typeof obj.analog1 === "number") && (typeof obj.analog2 === "number")) {
let sum = obj.analog1 + obj.analog2;
SQ.dispatch(1, sum);
if (sum >= ALARM_THRESHOLD) {
SQ.dispatch_event(1, SQ.ALARM, "Sum critical");
} else if (sum >= WARN_THRESHOLD) {
SQ.dispatch_event(1, SQ.WARNING, "Sum high");
}
} else {
SQ.dispatch_event(1, SQ.INFO, "No Data");
}
}, null);
Example - Scale and offset values current1 and current2, and send them as the new values cp1 and cp5 with varying precision.
load('senquip.js');
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
SQ.dispatch_double(1, 42.1*obj.current1 + 1.51, 0); // No decimal
SQ.dispatch_double(5, -3.1416*obj.current2 + 9, 3); // 3 decimal places
}, null);
Filtering & Persistent Variables¶
Example - Implementation an exponential moving average across consecutive measurement cycles. Highlights the use of global variables to store information between measurement cycles.
load('senquip.js');
let filtered_value = 0;
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
let alpha = 0.3;
let new_sample = obj.current1;
filtered_value = (alpha * new_sample) + (1 - alpha)*filtered_value;
SQ.dispatch(1, filtered_value);
}, null);
Note
The above example using global variables will only work if the device is set to ‘Always On’. Information in global variables is lost when the device sleeps or resets.
Persistent variables can be achieved using Files, provided the frequency of writes to the filesystem is limited. See File examples.
Parsing CAN Data¶
Example - Look for a specific PGN, parse the first 2 bytes of CAN data from Hex format, convert to a 16-bit signed value, then apply a fixed scale and offset to the result.
load('senquip.js');
// Function to convert a 16-bit unsigned integer to 16-bit signed value
function int16(x) {
if (x > 32767) {x = x - 65536;}
return x;
}
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
if (typeof obj.can1 !== undefined) {
for (let i = 0; i < obj.can1.length; i++) {
// Look for the specific PGN:
if (obj.can1[i].id === 0x18FF1CF2) {
// Extract the first 4 Hex characters (2 bytes):
let d = SQ.parse(obj.can1[i].data, 0, 4, 16);
// Convert to a signed 16-bit value and scale/offset the result:
SQ.dispatch_double(1, int16(d) * 0.125 + 4.5, 1);
// Extract the next 4 Hex characters and reverse the byte order:
let e = SQ.parse(obj.can1[i].data, 4, 8, -16);
// Keep result as an unsigned number and scale:
SQ.dispatch_double(2, e * 0.5, 1);
}
}
} else {
SQ.dispatch_event(1, SQ.WARNING, "No CAN data available");
}
}, null);
J1939 Fault Codes¶
Example - Determine when a J1939 Fault code is active on CAN1 using some funky byte manipulation.
load('senquip.js');
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
if (typeof obj.can1 !== undefined) {
for (let i = 0; i < obj.can1.length; i++) {
// Look for the fault code PGN from any SA:
if ((obj.can1[i].id>>8) === 0x18FECA) {
// Decode DTC according to Conversion Method 4
let byte34 = SQ.parse(obj.can1[i].data, 4, 4, 16, SQ.U16);
let byte5 = SQ.parse(obj.can1[i].data, 8, 2, 16, SQ.U8);
let byte6 = SQ.parse(obj.can1[i].data, 10, 2, 16, SQ.U8);
let spn = byte34 | (byte5 & 0xE0)<<11;
let fmi = byte5 & 0x1F;
let oc = byte6 & 0x7F;
if (spn !== 0) {
let s = "DTC SPN: " + JSON.stringify(spn) + " FMI: " + JSON.stringify(fmi);
SQ.dispatch_event(1, SQ.ALARM, s);
}
}
}
} else {
SQ.dispatch_event(1, SQ.WARNING, "No CAN data available");
}
}, null);
Transmit CAN Data¶
Example - Regularly send a CAN message using a timer, containing measurements from the device.
load('senquip.js');
load('api_timer.js');
let en_tx = false;
let can_msg = "01234567";
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
if (typeof obj.analog1 === "number") {
let a = Math.floor(obj.analog1*100);
can_msg = chr(f&0xFF) + chr((f>>8)&0xFF) + chr((f>>16)&0xFF);
en_tx = true;
} else {
en_tx = false;
}
}, null);
// Set up a repeating timer to handle the CAN transmit:
Timer.set(1000, Timer.REPEAT, function() {
// Do nothing if tx is not enabled:
if (en_tx === false) return;
// Send an extended message:
CAN.tx(1, 0x18FB1055, can_msg, can_msg.length, CAN.EXT);
}, null);
Use of Triggers¶
Example - Set up a trigger handler to respond to button presses from the Senquip Portal.
load('senquip.js');
load('api_serial.js');
SQ.set_trigger_handler(function(tp) {
if (tp === 1) { SQ.set_output(1, SQ.ON, 5); } // Turn on Output 1 for 5s
if (tp === 2) { SQ.set_output(1, SQ.OFF, 0); } // Turn Output 1 off forever
if (tp === 3) {
let s = "HELLO WORLD!";
SERIAL.write(1, s, s.length); // Send string over serial port (RS232 or RS485)
}
if (tp === 4) { SERIAL.write(1, "\x48\x45\x58", 3); } // Send 3 bytes in HEX format
}, null);
Use of Timers¶
Example - Set up a trigger handler to immediately send one serial message, and then send a second message one second later.
load('senquip.js');
load('api_timer.js');
load('api_serial.js');
SQ.set_trigger_handler(function(tp) {
if (tp === 1) {
// When Portal button #1 is pressed, immediately send 1st serial string
let s1 = "TURN ON";
SERIAL.write(1, s1, s1.length);
// Set a non-repeating timer for 1000 ms, which will call the inline function().
Timer.set(1000, 0, function() {
// After one second, send the 2nd serial string
let s2 = "TURN OFF";
SERIAL.write(1, s2, s2.length);
}, null);
}
}, null);
String Enumerations¶
Example - Send a string enumeration based on an analog voltage measurement. It also gracefully handles the case where ‘analog1’ does not exist in the data message, in which case ‘typeof obj.analog1’ would have the value ‘undefined’ (rather than ‘number’).
load('senquip.js');
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
let s = "No Signal";
if (typeof obj.analog1 === "number") {
if (obj.analog1 >= 4.5) { s = "Error"; }
else if (obj.analog1 >= 3.5) { s = "High"; }
else if (obj.analog1 >= 2.5) { s = "Normal"; }
else { s = "Low"; }
}
SQ.dispatch(1, s);
}, null);
Custom HTTP Message¶
Example - Send a custom HTTP POST message.
load('senquip.js');
load('api_endpoint.js');
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
let out = {
id: obj.deviceid,
time: obj.ts,
flow_rate: obj.current1 * 1000
};
HTTP.post(JSON.stringify(out), "Content-Type: application/json\r\n");
}, null);
Custom Settings¶
Example - Retrieval and use of custom settings from a script. The example also dispatches the settings to the Portal so a record of the current value is kept. This may be desirable for debugging, traceability or reporting purposes.
load('senquip.js');
load('api_config.js');
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
// Get the settings:
let num_threshold = Cfg.get('script.num1');
let str_setting = Cfg.get('script.str1');
// Compare measurement against the custom setting:
if (obj.analog1 > num_threshold) { SQ.set_output(1, SQ.ON, 0); }
// Send the custom settings to the Portal for reporting/logging purposes:
SQ.dispatch(1, num_threshold);
SQ.dispatch(2, str_setting);
}, null);
Bluetooth¶
Example - An example of how to transmit and receive GPS data from one device to another using Bluetooth advertisements.
load('senquip.js');
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
// If we have a valid GPS position, broadcast this to other devices via BLE
if (typeof obj.gps_lat !== 'undefined') {
let ble_data = SQ.encode(obj.gps_lat,SQ.FLOAT) + SQ.encode(obj.gps_lon,SQ.FLOAT);
BLE.sq_adv(ble_data);
}
// Check for BLE data from nearby devices
if (typeof obj.ble !== 'undefined') {
for (let i = 0; i < obj.ble.length; i++) {
// Check the message contains the 'Senquip Manufacturer Specific' header
let sl = obj.ble[i].data.slice(2, 8);
if (sl === "ff710a") {
// We have found a message from another device
// Extract the lat and long of the other device:
let lat = SQ.parse(obj.ble[i].data,8,8,16,SQ.FLOAT);
let lng = SQ.parse(obj.ble[i].data,16,8,16,SQ.FLOAT);
// Calculated the distance to us:
let meters = SQ.distance(lat, lng);
SQ.dispatch(1, meters);
}
}
}
}, null);
Example - Send data via Bluetooth to the Senquip Mobile App.
Note
The Senquip Mobile app is under development. The following example works with App version 1.0.0
load('senquip.js');
let APP_FORMAT_ID = "\x80";
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
// To send text, the first byte must always be \x80 so the app knows how to interpret the data.
if (typeof obj.analog1 !== 'undefined') {
let fuel_level = obj.analog1 * 205;
let ble_data = APP_FORMAT_ID + "G472 - Fuel Level: " + JSON.stringify(fuel_level);
BLE.sq_adv(ble_data);
}
}, null);
Files¶
Example - Log ambient temperature to a CSV file. Roll over to a new file every hour.
load('senquip.js');
load('api_file.js');
load('api_timer.js');
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
// Create a filename containing the date and hour,
// therefore every hour the filename will change.
let filename = Timer.fmt("data-%F-%H.csv", Timer.now());
// Create the new line of data for the file, where the first column is the time
// and second column is the ambient temperature
let new_line = Timer.fmt("%T", Timer.now()) + "," + JSON.stringify(obj.ambient) + "\n";
// Append the new line to the file
let bytes_written = File.write(new_line, filename, "a");
// Check for error
if (bytes_written === 0) {
// Failed to write file
}
}, null);
Warning
This example will continue to write files until the filesystem is full. Once the filesystem is full, all further file writes will fail.
Example - Demonstration of reading and writing persistent values to a file. The file remains on the filesystem and is re-loaded every time the device reboots or sleeps.
load('senquip.js');
load('api_file.js');
let SETTINGS_FILENAME = "settings.cfg";
let settings = {};
function load_from_file() {
let file_str = File.read(SETTINGS_FILENAME);
if (file_str) {
// Load file into settings structure
settings = JSON.parse(file_str);
} else {
// Failed to read file, create defaults
settings = {
a: "String Value",
b: 1234,
c: [1, 2, 3, 4]
};
}
}
// Load from file the first time after booting
load_from_file();
SQ.set_data_handler(function(data) {
SQ.dispatch(1, settings.a);
SQ.dispatch(2, settings.b);
SQ.dispatch(3, settings.c[3]);
}, null);
SQ.set_trigger_handler(function(tp) {
if (tp === 1) {
// Change a settings value
settings.b++;
// Write updated settings to file
let bytes_written = File.write(JSON.stringify(settings), SETTINGS_FILENAME);
// Check for error
if (bytes_written === 0) {
// Failed to write file
}
}
if (tp === 2) {
// Manually load settings from file
load_from_file();
}
}, null);
Time of Day¶
Example - Change script behaviour based on the time of day. In this example the output is turned on every cycle but only if the time is between 7am to 7pm.
load('senquip.js');
load('api_timer.js');
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
// Create a current time object
let utc_str = Timer.fmt("{hour:%H,minute:%M,second:%S}", Timer.now());
let utc = JSON.parse(utc_str);
// Apply a local timezone offset (this could also be a custom setting)
let utc_offset = 10; // AEST
let hour = utc.hour + utc_offset;
if (hour >= 24) hour = hour - 24;
// Turn output on for 120 seconds between certain hours of the day
if ((hour >= 7) && (hour <= 19)) {
SQ.set_output(1, SQ.ON, 120);
}
}, null);
Modbus¶
Example - Send a custom Modbus packet via Serial.
load('senquip.js');
load('api_serial.js');
SQ.set_data_handler(function(data) {
let obj = JSON.parse(data);
// Create a Modbus command
// \x02 = Slave address 2
// \x06 = Modbus Function 6 (Write Holding Register)
// \x00\x01 = Register Address 1
// \x00\x08 = Value 8
let cmd_str = "\x02\x06\x00\x01\x00\x08";
// Calculate and encode CRC
let crc = SQ.crc(cmd_str);
let crc_str = SQ.encode(crc, -SQ.U16);
let modbus_str = cmd_str + crc_str;
SERIAL.write(1, modbus_str, 8);
}, null);